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Abstract
A geometrical approach to Lagrangian and Hamiltonian non-holonomic
dynamics is proposed. The construction relies on a revisitation of the Poincaré–
Cartan 1-form, leading to the introduction of the concepts of Lagrangian and
Hamiltonian pairs and to the implementation of a non-holonomic Legendre
map. The relationship with the standard ‘extrinsic’ approach is outlined.
A unified ‘canonical framework’, joining both Lagrangian and Hamiltonian
aspects, is proposed.

PACS numbers: 45.20.Jj, 02.40.Hw

1. Introduction

In recent years, the search for a deeper insight into the study of classical non-holonomic
dynamics has brought about a great number of different geometric approaches [1, 3, 7–11,
13–20]. Despite the differences, all of them geometrize the presence of constraints by assigning
the corresponding family of admissible kinetic states, regarded as a submanifold A of the
velocity space.

In the present paper, attention will be paid to Lagrangian systems, meant as systems
whose equations of motion are derivable from a suitable Poincaré–Cartan 1-form. The plan is
to extend to the non-holonomic context the geometrical approach to classical Lagrangian and
Hamiltonian mechanics developed in [4]. For the convenience of the reader, a brief review of
the method is reported in section 2.

A major source of difficulty in the transition to non-holonomic systems comes from the
fact that assigning a Lagrangian on the submanifold A is generally insufficient to reconstruct
the constrained dynamics.
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The difficulty may be overcome by means of an ‘extrinsic’ algorithm, involving a
Lagrangian defined over the whole velocity space, and the subsequent pull-back on A of
the associated Poincaré–Cartan 1-form. However, as shown in appendix A, the simplification
is only apparent, since the ‘extrinsic’ Lagrangian needed in order to reproduce the correct
equations of motion on A is generally different from the unconstrained one, i.e. from the
Lagrangian involved in the description of the evolution of the system as it would be in the
absence of constraints.

For this reason, in section 3 we propose a totally intrinsic approach to the problem. The
intrinsic Lagrangian and the Poincaré–Cartan 1-form are glued together into a Lagrangian
pair, whose geometric properties allow a simple derivation of the Lagrange–Chetaev equations
of motion. The section is ended by inspecting the relationship between the intrinsic set-up
and the more traditional extrinsic one.

Finally, in section 4 we examine the relationship between Lagrangian pairs and Legendre
maps, thereby opening the way to the Hamiltonian formulation of non-holonomic mechanics.
In the resulting context, the concepts of dynamical scheme and Hamiltonian pair allow the
building of a Hamiltonian scenario, perfectly symmetric to the Lagrangian one. Both scenarios
are eventually joined into what we call a canonical framework, consisting of the submanifold
A of admissible kinetic states, coupled with a partner submanifold on the Hamiltonian side,
carrying dynamical information on the system. The interaction of the resulting set-up with the
concepts of Lagrangian and Hamiltonian pair is thoroughly investigated.

The appendix provides a few explicit examples; apart from a practical explanation of the
new methods, they are mainly aimed at giving evidence of the difference between ‘extrinsic’
and ‘unconstrained’ Lagrangians in the study of constrained dynamics.

2. Geometrical preliminaries

2.1. Generalities

For the convenience of the reader, we review here a few basic aspects of jet bundle geometry
[2, 12], especially relevant to the subsequent discussion.

(i) Let M
t→ � denote an (m + 1)-dimensional differentiable manifold, fibred over the real

line �, viewed as an Euclidean 1-space1. The first jet space j1(M)
π→ M is then an affine

bundle overM , modelled on the vertical space V (M), and identified with the submanifold of
the tangent space T (M) described by the equation

j1(M) = {z | z ∈ T (M), 〈z, dt〉 = 1}. (2.1)

The geometry of the manifold j1(M)will be regarded as known. For the notation, terminology,
etc the reader is referred to [2] and references therein. Unless otherwise stated, we shall refer
j1(M) to local jet coordinates t, q1, . . . , qm, q̇1, . . . , q̇m. The notation ωi := dqi − q̇ i dt will
be assumed throughout.

For each z ∈ j1(M), the vertical lift of vectors provides an isomorphism between the
vertical spaces Vπ(z)(M) and Vz(j1(M)), expressed in coordinates as

Xi
(
∂

∂qi

)
π(z)

←→ Xi
(
∂

∂q̇i

)
z

. (2.2a)

1 A typical example is the configuration spacetime of a holonomic mechanical system, with the fibration t : M →�
given by the absolute time function.
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In a similar way, the projection π : j1(M) → M allows every contact 1-form σ at z to
be expressed as the pull-back of a 1-form σ̂ at π(z), thereby establishing a correspondence
Cz(j1(M))→ T ∗π(z)(M) summarized in the relation

σiω
i |z ↔ σi[dqi − q̇ i(z) dt]π(z). (2.2b)

Equations (2.2a) and (2.2b) determine a non-singular pairing 〈 ‖ 〉 between vertical
vectors and contact 1-forms on j1(M), i.e. a duality between Vz(j1(M)) and Cz(j1(M)) ∀z ∈
M—based on the identification [2]〈

∂

∂q̇i

∥∥∥∥ ωj
〉
z

:=
〈
∂

∂qi
, dqj − q̇j (z) dt

〉
π(z)

= δji . (2.3)

On the other hand, through ordinary pairing, every vector X ∈ Tz(j1(M)) acts as a linear
functional on T ∗z (j1(M)), and therefore also on Cz(j1(M)). For any X ∈ Tz(j1(M)) there
exists therefore a unique vector Jz(X) ∈ Vz(j1(M)) satisfying the requirement

〈Jz(X)‖σ 〉 = 〈X, σ 〉 ∀σ ∈ Cz(j1(M)). (2.4)

By varying z, the correspondenceX→ Jz(X) defines a tensor field J of type (1, 1) on j1(M),
known as the fundamental tensor. In local coordinates equations (2.3) and (2.4) provide the
explicit representation

J (X) = 〈J (X)‖ωi〉 ∂
∂q̇i
= 〈X,ωi〉 ∂

∂q̇i
⇒ J = ∂

∂q̇i
⊗ ωi. (2.5)

Strictly associated with J is an anti-derivation dv of the Grassmann algebra over j1(M), known
as the fibre differential, uniquely characterized by the requirements

dvf = ∂f

∂q̇k
ωk dv(df ) + d(dvf ) + dt ∧ df = 0 ∀f ∈ F (j1(M)) . (2.6)

An important property of the operator (2.6) is its cohomological character, expressed by the
identity dv · dv ≡ 0 [2].

(ii) Let A denote an embedded submanifold of j1(M), fibred over M . The situation,
summarized in the commutative diagram

A i−−−−→ j1(M)

π

� �π
M M

(2.7)

provides the natural setting for the study of dynamical systems in the presence of non-
holonomic constraints [1, 3].

Referring A to local fibred coordinates t, q1, . . . , qm, z1, . . . , zr , the embedding
i : A→ j1(M) is expressed locally as

q̇ i = ψi(t, q1, . . . , qm, z1, . . . , zr) i = 1, . . . ,m (2.8a)

with rank‖∂(ψ1, . . . , ψm)/∂(z1, . . . , zr )‖ = r . Alternatively, one may adopt the implicit
representation

gσ (t, q1, . . . , qm, q̇1, . . . , q̇m) = 0 σ = 1, . . . ,m− r (2.8b)

with rank‖∂(g1, . . . , gm−r )/∂(q̇1, . . . , q̇m)‖ = m− r .
For simplicity, in the following we shall not distinguish between the manifold A and

its image i(A) ⊂ j1(M). A section γ : � → M will be called A-admissible (admissible, for
short) if and only if its first jet extension is contained in A.
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Concepts such as dynamical flow, vertical vector and contact 1-form on A will be
regarded as known [1, 3]. The vertical bundle and the contact bundle over A will be
respectively denoted by V (A) and C(A). The notation ω̃i := i∗(ωi) = dqi − ψi dt will
be used throughout.

(iii) The bilinear pairing (2.3) is easily adapted to the submanifoldA through the identification〈
∂

∂zA

∥∥∥∥ ω̃j
〉
z

:=
〈
i∗

(
∂

∂zA

) ∥∥∥∥ ωj
〉
i(z)

=
(
∂ψj

∂zA

)
z

resulting in the representation

〈V ‖ν〉 = V Aνj ∂ψ
j

∂zA
∀V = V A ∂

∂zA
ν = νj ω̃j . (2.9)

Of course, the correspondence V (A)× C(A)→ F (A) expressed by equation (2.9) has
now a singular character; it is clear that any 1-form ν = νiω̃

i satisfying νi
∂ψi

∂zA
= 0, A =

1, . . . , r annihilates all vertical vectors.
The totality of such 1-forms generates a vector sub-bundle χ(A) ⊂ C(A) of the contact

bundle, known as the Chetaev bundle [3]. Every section ν : A → χ(A) is called a Chetaev
1-form on A.

A local basis for the Chetaev bundle consists of any set of linearly independent contact
1-forms µσ = µσ iω̃i , σ = 1, . . . ,m− r satisfying the conditions

µσ i
∂ψi

∂zA
= 0 σ = 1, . . . ,m− r A = 1, . . . , r.

In particular, given any implicit representation (2.8b) for the submanifold A, a possible choice
is provided by µσ = i∗(dvgσ ) = i∗

(
∂gσ

∂q̇i

)
ω̃i .

Remark 2.1. Due to its singular character, the pairing (2.9) does not determine a duality
between V (A) and C(A), thereby preventing any direct implementation of the algorithm
involved in the definition of the fundamental tensor and of the associated fibre differential.
As we shall see, this plays a crucial role in the transition from holonomic to non-holonomic
Lagrangian mechanics.

2.2. The Lagrangian bundles

In recent papers [4, 6], a new geometrical setting for a gauge-invariant formulation of
Lagrangian mechanics has been exploited. For the convenience of the reader, we outline
here the main features of the method.

(i) With every mechanical system B subject to (smooth) positional constraints, we associate a

double fibration P
π→ Vn+1

t→�, where

(i) Vn+1
t→� is the configuration spacetime of B, endowed with the absolute time function;

(ii) P
π→ Vn+1 is a principal fibre bundle with structural group (�,+), diffeomorphic, in a

non-canonical way, to the Cartesian product Vn+1 ×�, called the bundle of affine scalars
over Vn+1.

The action of (�,+) on P results in a 1-parameter group of diffeomorphisms ψξ : P → P ,
expressed through the additive notation

(ν, ξ) ∈ P × �→ ψξ (ν) := ν + ξ ∈ P. (2.10)

Every function u : P →� satisfying u(ν + ξ) = u(ν) + ξ is called a trivialization of P .
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The assignment of a trivialization u allows the lifting of every local coordinate system
t, q1, . . . , qn over Vn+1 to a corresponding ‘fibred’ coordinate system t, q1, . . . , qn, u over P .
The group of fibred coordinate transformations has the form

t̄ = t + c q̄i = q̄ i(t, q1, . . . , qn) ū = u + f (t, q1, . . . , qn).

(ii) The (pull-back of the) absolute time function provides a fibration P
t→ �. Let

j1(P,�) π→ P denote the associated first-jet space. As usual, we shall refer j1(P,�) to
local jet-coordinates t, qi, u, q̇i, u̇, with transformation laws

t̄ = t + c q̄i = q̄i(t, q) ū = u + f (t, q) (2.11a)

¯̇qi = ∂q̄i

∂qk
q̇k +

∂q̄i

∂t
¯̇u = u̇ +

∂f

∂qk
q̇k +

∂f

∂t
:= u̇ + ḟ . (2.11b)

The geometrical properties of j1(P,�) include, in the first place, all the attributes coming
from the jet-bundle structure (fundamental tensor, fibre differential, etc). A local basis for the
contact bundleC(j1(P,�)), dual of the basis ∂

∂u̇
, ∂
∂q̇i

of the vertical bundle V (j1(P,�)) under
the pairing 〈 ‖ 〉, is provided by the 1-forms,

ω0 = du− u̇ dt ωk = dqk − q̇k dt k = 1, . . . , n. (2.12)

In addition to the jet attributes, the space j1(P,�) inherits from P two distinguished actions
of the group (�,+), expressed in coordinates as

ψξ∗ : (t, qi, u, q̇i , u̇) −→ (t, qi, u + ξ, q̇i, u̇) (2.13a)

φξ : (t, qi, u, q̇i, u̇) −→ (t, qi, u, q̇i, u̇ + ξ). (2.13b)

Referring to [4] for the necessary details, we focus on the following basic facts:

• The direct product of the actions (2.13a) and (2.13b) makes j1(P,�) into a principal fibre
bundle over j1(Vn+1), with projection j1(P,�) π2→ j1(Vn+1) expressed locally as

π2 : (t, qi, u, q̇i , u̇) −→ (t, qi, q̇ i). (2.14)

• The quotient of j1(P,�) by the action (2.13a), denoted by L(Vn+1), is a (2n + 2)-
dimensional manifold, with coordinates t, qi, q̇ i, u̇, called the Lagrangian bundle; the
quotient map makes j1(P,�) into a principal fibre bundle over L(Vn+1), with structural
group (�,+); at the same time, the action (2.13b) ‘passes to the quotient’, makingL(Vn+1)

into a principal fibre bundle over j1(Vn+1), again with structural group (�,+).
• In a similar way, the quotient of j1(P,�) by the action (2.13b), denoted by Lc(Vn+1), is

a (2n + 2)-dimensional manifold, with coordinates t, qi, u, q̇i , called the co-Lagrangian
bundle; the quotient map makes j1(P,�) into a principal fibre bundle over Lc(Vn+1), with
structural group (�,+), while the action (2.13a), transferred to the quotient space, makes
Lc(Vn+1) into a principal fibre bundle over j1(Vn+1), with structural group (�,+).

The situation, summarized into the diagram

j1(P,�) −−−−→ Lc(Vn+1)� �
L(Vn+1) −−−−→ j1(Vn+1)

(2.15)

provides the necessary tool for a gauge-invariant formulation of Lagrangian mechanics. As
outlined in [4], this is achieved by giving up the traditional approach,based on the interpretation
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of the Lagrangian function L(t, qi, q̇ i) as the representation of a (gauge-dependent) scalar
field over j1(Vn+1), and introducing instead the concept of Lagrangian section, meant as a
section l : j1(Vn+1)→ L(Vn+1) of the Lagrangian bundle.

For each choice of the trivialization u of P , the description of l takes the local form

u̇ = L(t, qi, q̇ i) (2.16)

i.e. it does still rely on the assignment of a function L(t, qi, q̇ i ) over j1(Vn+1). However, as
soon as the trivialization is changed into ū = u + f , the representation (2.16) undergoes the
transformation law

¯̇u = u̇ + ḟ = L(t, qi, q̇ i) + ḟ := L′(t, qi, q̇ i)
involving a different, gauge-equivalent ‘Lagrangian’.

Referring to [4] for further comments, we concentrate on the algorithm assigning to
each Lagrangian section l a corresponding Poincaré–Cartan 1-form on j1(Vn+1). To this end,
starting with l, we consider in turn:

• the trivialization ψl of the bundle L(Vn+1)→ j1(Vn+1) induced by l, described locally by
the function u̇− L(t, qi, q̇ i );
• the pull-back of ψl on j1(P,�), denoted by ψ̂ l , and described locally by the function
ψ̂ l(t, q

i, u, q̇i, u̇) = u̇− L(t, qi, q̇ i).
It is then an easy matter to verify the validity of the following assertions:

(a) ψ̂ l is a trivialization of the bundle j1(P,�)→ Lc(Vn+1); as such, it determines a section
l̂ : Lc(Vn+1) → j1(P,�), expressed locally as u̇ = L(t, qi, q̇ i); the sections l and l̂,
together, provide a principal bundle homomorphism, summarized in the commutative
diagram

Lc(Vn+1)
l̂−−−−→ j1(P,�)� �

j1(Vn+1)
l−−−−→ L(Vn+1)

(2.17)

(b) The fibre differential dvψ̂l , expressed locally as

dvψ̂ l = dv[u̇− L(t, qi, q̇ i)] = ω0 − ∂L

∂q̇k
ωk (2.18)

determines a connection on the principal bundle j1(P,�)→ L(Vn+1).

In view of (a) and (b), the pull-back of dvψ̂ l through the diagram (2.17), defines a
connection on Lc(Vn+1)→ j1(Vn+1), described locally by the 1-form

l̂∗(dvψ̂l) = du− L dt − ∂L

∂q̇k
ωk. (2.19)

The difference du− l̂∗(dvψ̂ l) is then (the pull-back of) a 1-form ϑ over j1(Vn+1), called the
Poincaré–Cartan 1-form of l, expressed in coordinates as

ϑ = L dt +
∂L

∂q̇k
ωk. (2.20)

In other words, for each choice of the trivialization u of P , the Poincaré–Cartan 1-form is
nothing but a representation of the connection on the bundle Lc(Vn+1) → j1(Vn+1) induced
by the Lagrangian section l through the process indicated above. The exterior differential
 := dϑ , known as the Poincaré–Cartan 2-form, is therefore a gauge-invariant object over
j1(Vn+1), identical, up to a sign, to the curvature of the connection (2.19).
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By means of the correspondence l →  we recover the entire content of classical
Lagrangian mechanics. The argument is well known. For further information, the reader is
referred to [4] and references therein.

Remark 2.2. In view of equation (2.20), interior multiplication by converts vertical vectors
into contact 1-forms, thereby giving rise to a linear map g : V (j1(Vn+1)) → C(j1(Vn+1)),
expressed in coordinates as

X = Xi ∂
∂q̇i

⇒ g(X) := X  = LX(ϑ) = Xi ∂2L

∂q̇i∂q̇k
ωk. (2.21)

Coupled with the pairing (2.3), the correspondence (2.21) determines a symmetric scalar
product on V (j1(Vn+1)), based on the prescription

(X, Y ) = 〈X‖g(Y )〉 = ∂2L

∂q̇i∂q̇j
XiY j . (2.22)

The section l is called regular if and only if the scalar product (2.22) is non-degenerate, i.e. if
and only if the matrix ∂2L

∂q̇i∂q̇j
is everywhere non-singular.

2.3. The Hamiltonian bundles

Paralleling the discussion in section 2.2, we now consider the fibration P → Vn+1, and denote
by π : j1(P,Vn+1)→ P the associated first jet space.

Every fibred coordinate system t, qi, u on P induces local coordinates t, qi, u, p0, pi on
j1(P,Vn+1), with transformation group

t̄ = t + c q̄i = q̄i (t, q1, . . . , qn), ū = u + f (t, q1, . . . , qn) (2.23a)

p̄0 = p0 +
∂f

∂t
+

(
pk +

∂f

∂qk

)
∂qk

∂t̄
p̄i =

(
pk +

∂f

∂qk

)
∂qk

∂q̄i
. (2.23b)

Equations (2.23a) and (2.23b) ensure the invariance of the contact 1-form

� = du− p0 dt − pi dqi (2.24)

known as the Liouville 1-form of j1(P,Vn+1).
Exactly as in the Lagrangian case, one can easily establish two distinguished actions of

the group (�,+) over j1(P,Vn+1), expressed synthetically as

ψξ∗ : (t, qi, u, p0, pi) −→ (t, qi, u + ξ, p0, pi) (2.25a)

φξ : (t, qi, u, p0, pi) −→ (t, qi, u, p0 + ξ, pi). (2.25b)

Referring to [4] for the necessary details, we focus on the following facts:

• The direct product of the actions (2.25a) and (2.25b) makes j1(P,Vn+1) into a principal
fibre bundle over a (2n + 1)-dimensional base space �(Vn+1) with coordinates t, qi, pi ,
called the phase space.
• The quotient of j1(P,Vn+1) by the action (2.25a), denoted by H(Vn+1), is an affine bundle

over Vn+1, with coordinates t, qi, p0, pi , modelled on the cotangent space T ∗(Vn+1) and
called the Hamiltonian bundle; the quotient map makes j1(P,Vn+1) into a principal
fibre bundle over H(Vn+1), with structural group (�,+); the canonical 1-form (2.24)
endows j1(P,Vn+1) → H(Vn+1) with a distinguished connection, called the canonical
connection; at the same time, the action (2.25b) ‘passes to the quotient’, making H(Vn+1)

into a principal fibre bundle over the phase space �(Vn+1).
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• The quotient of j1(P,Vn+1) by the action (2.25b), denoted by Hc(Vn+1), is a (2n + 2)-
dimensional manifold, with coordinates t, qi, u, pi , called the co-Hamiltonian bundle;
the quotient map makes j1(P,Vn+1) into a principal fibre bundle over Hc(Vn+1); at the
same time, the action (2.25a), transferred to Hc(Vn+1), makes the latter into a principal
fibre bundle over�(Vn+1).

The situation, summarized into the commutative diagram

j1(P,Vn+1) −−−−→ Hc(Vn+1)� �
H(Vn+1) −−−−→ �(Vn+1)

(2.26)

provides the starting point for a gauge-invariant formulation of Hamiltonian mechanics [5].

3. Non-holonomic Lagrangian dynamics

3.1. Non-holonomic Lagrangian bundles

Let us return to the diagram (2.7), with the base manifoldM now explicitly identified with the
configuration spacetimeVn+1 of a material systemB, and with the embedding i : A→ j1(Vn+1)

taken as a description of the kinetic constraints acting on B [1, 3]. The construction of the
Lagrangian bundles is easily adapted to the submanifoldA, through a straightforward pull-back
procedure.

As usual, the situation is conveniently expressed through a commutative diagram

�

�

�

�

� �

� �

������

������

������

������

L(A) A

Lc(A)jA1 (P,�)

j1(Vn+1)

Lc(Vn+1)j1(P,�)

L(Vn+1)

(3.1)

in which all arrows are implicitly defined by the context (namely, L(A) and Lc(A) are
respectively the pull-back of L(Vn+1) and Lc(Vn+1) on the submanifold A → j1(Vn+1),
jA1 (P,�) is alternatively the pull-back of j1(P,�)→ L(Vn+1) on the submanifold L(A)→
L(Vn+1), or the pull-back of j1(P,�)→ Lc(Vn+1) on Lc(A)→ Lc(Vn+1), etc).

As usual, we refer A to local fibred coordinates t, q1, . . . , qn, z1, . . . , zr , with
transformation laws

t̄ = t + c q̄i = q̄ i(t, qk) z̄A = z̄A(t, qk, zB) (3.2)

and express the embedding i : A→ j1(Vn+1) in the form

q̇ i = ψi(t, qk, zA). (3.3)
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The following assertions are then entirely straightforward:

• Every choice of a trivialization u of P allows the lifting of the coordinates on A to local
coordinates t, qi, zA, u̇ on L(A), t, qi, u, zA on Lc(A) and t, qi, u, zA, u̇ on jA1 (P,�);
the resulting coordinate transformations are obtained by completing equations (3.2) with
(the significant part of) the system

ū = u + f (t, qi) ¯̇u = u̇ +
∂f

∂t
+
∂f

∂qk
ψk(t, qi, zA) := u̇ + ḟ |A.

• All the embeddings L(A) → L(Vn+1),Lc(A) → Lc(Vn+1), j
A
1 (P,�) → j1(P,�) are

described locally by equation (3.3).
• A local basis for the contact bundle C

(
jA1 (P,�)

)
is provided by the 1-forms

ω̃0 = du− u̇ dt ω̃i = dqi − ψi dt . (3.4)

• The restriction to the submanifold jA1 (P,�) of the projection (2.14) gives rise to a
surjection jA1 (P,�)→ A, still denoted by π2, and expressed in coordinates as

π2 : (t, qi, u, zA, u̇) −→ (t, qi, zA). (3.5)

• Both actions (2.13a) and (2.13b) of the group (�,+) on j1(P,�) preserve the submanifold
jA1 (P,�), thereby inducing corresponding actions (ψξ )∗ : jA1 (P,�) → jA1 (P,�) and
φξ : jA1 (P,�)→ jA1 (P,�), expressed in coordinates as

ψξ∗ : (t, qi, u, zA, u̇) −→ (t, qi, u + ξ, zA, u̇)

φξ : (t, qi, u, zA, u̇) −→ (t, qi, u, zA, u̇ + ξ).

From this, proceeding as in section 2.2, it is easily seen that the manifold jA1 (P,�) is a
principal fibre bundle overL(A) under the action (ψξ )∗, as well as a principal fibre bundle
over Lc(A) under the action φξ , and that both L(A) and Lc(A) are principal fibre bundles
over A under the (induced) actions of (ψξ )∗ and φξ respectively. Accordingly, all arrows
in the front and rear faces of the diagram (3.1) express principal fibrations, while those in
the left and right faces are principal bundle homomorphisms.

Preserving the terminology of section 2.2, the principal fibre bundles L(A) → A and
Lc(A) → A will be respectively called the non-holonomic Lagrangian and co-Lagrangian
bundle over A. A section l : A→ L(A)will be called a (non-holonomic) Lagrangian section.
Once a trivialization u of P has been fixed, the local description of any such section takes the
explicit form,

u̇ = L(t, qi, zA). (3.6)

The function on the right-hand side of equation (3.6) will be called a Lagrangian on A. Under
an arbitrary change u → u + f of the trivialization, the representation (3.6) undergoes the
transformation law,

¯̇u = u̇ + ḟ |A = L +
∂f

∂t
+
∂f

∂qi
ψi . (3.7)

Let us now explore the possibility of extending to the non-holonomiccontext the algorithm
assigning to every Lagrangian section (3.6) a corresponding Poincaré–Cartan 1-form on A. To
this end, proceeding as in section 2.2, we convert l into a trivialization ψl := u̇−L(t, qi, zA)
of the bundle L(A) → A, pull the result back on jA1 (P,�), thus getting a trivialization
ψ̂l = u̇−L(t, qi, zA) of the bundle jA1 (P,�)→ Lc(A), and use the latter to induce a section
l̂ : Lc(A)→ jA1 (P,�), with local equation u̇ = L(t, qi, zA).
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In this way, we get the non-holonomic analogue of the bundle homomorphism (2.17),
namely

Lc(A) l̂−−−−→ jA1 (P,�)� �
A l−−−−→ L(A)

. (3.8)

Unfortunately, the analogy ends here: the subsequent step, namely the creation of a
connection 1-form over the bundle jA1 (P,�) → L(A) through fibre differentiation of the
function ψ̂ l , is in fact precluded by the fact that the geometrical attributes of jA1 (P,�) do not
include any such operation.

The difficulty may be overcome in various ways. A commonly adopted procedure
consists in modifying the starting point, assigning, instead of l, an ‘extrinsic’ section
l̃ : j1(Vn+1)→ L(Vn+1), defined globally on j1(Vn+1), or, at least, on an open neighbourhood
of the submanifold A. One may then implement the algorithm of section 2.2 up to the
construction of the Poincaré–Cartan 1-form on j1(Vn+1), pull the result back on A, and call it
the non-holonomic Poincaré–Cartan 1-form of the system. The method is perfectly all right, as
long as l̃ is consistently regarded as an attribute of the constrained system, not to be confused
with any sort of ‘free’ Lagrangian associated with the fictitious system resulting from the
given one by removing the kinetic constraints. A few examples illustrating this aspect may be
found in appendix A.

Of course, one may choose to define the extrinsic Lagrangian section l̃ as the one
(if any!) yielding the correct Lagrange–Chetaev equations of motion on A. This is a legitimate
viewpoint, essentially equivalent to a restatement of the inverse problem in the presence of
kinetic constraints. The advantages of such an approach, however, are more apparent than real,
since, in general, the determination of l̃ depends not only on the active interactions but also,
explicitly, on the nature of the reactive forces. In this respect, a genuinely intrinsic approach
seems more appropriate.

In what follows, we propose a detailed analysis of this point. Throughout the discussion,
the main emphasis will be put on the equations of motion, and in particular, on the construction
of a non-holonomic analogue of the Poincaré–Cartan formalism. The relationship between the
intrinsic viewpoint and the constitutive characterization of the constraints will be examined in
a forthcoming paper.

3.2. Lagrangian pairs

Pursuing the viewpoint initiated in section 3.1, we now focus on the front face of diagram
(3.1), namely

jA1 (P,�) −−−−→ Lc(A)� �
L(A) −−−−→ A

(3.9)

and regard it as the natural set-up for the construction of an intrinsic, non-holonomic
Lagrangian formalism. Let C(A) and C

(
jA1 (P,�)

)
denote the contact bundles on the

manifolds A and jA1 (P,�) respectively.

Definition 3.1. A connection on the principal fibre bundle jA1 (P,�) → L(A) is called a
contact connection if and only if
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• the associated connection 1-form ϑ̂ is a contact 1-form over jA1 (P,�);
• for each choice of the trivialization u, the difference ω̃0 − ϑ̂ is the pull-back of a contact

1-form over A with respect to the projection (3.5).

According to definition 3.1, every contact connection 1-form admits a local representation
of the form

ϑ̂ = ω̃0 − ϕi ω̃i = du− u̇ dt − ϕi(dqi − ψi dt) (3.10)

with ϕi = ϕi(t, q
i, zA) ∈ F (A). Under an arbitrary change of trivialization ū = u + f ,

equation (3.10) is transformed into

ϑ̂ = dū− ¯̇u dt − (df − ḟ dt)− ϕiω̃i = ω̃ 0 − ϕiω̃i
with ϕ

i
= ϕi + ∂f

∂qi
. In view of the stated properties, the contact connections over

jA1 (P,�) → L(A) are easily recognized to form an affine bundle over A, modelled on the
contact bundle C(A), and diffeomorphic to the pull-back of the phase space �(Vn+1)→ Vn+1

over A→ Vn+1.
Let us now envisage a geometrical set-up consisting in the simultaneous assignment

of a Lagrangian section l : A → L(A), expressed locally as u̇ = L(t, qi, zA), and of a
contact connection on jA1 (P,�), with connection 1-form (3.10). In this way, proceeding as in
section 3.1, namely lifting l to a section l̂ : Lc(A)→ jA1 (P,�), and pulling back ϑ̂ through
l̂, we end up with a connection on the principal fibre bundle Lc(A) → A, described by the
connection 1-form,

l̂∗(ϑ̂) = du− L(t, qi, zA) dt − ϕi(t, qi, zA)ω̃i . (3.11)

This is precisely what was done in section 2.2, the (essential!) difference is that, in the
holonomic context, the contact connection ϑ̂ was not an independent piece of information, but
was uniquely determined by the knowledge of l.

The plan is to generalize this state of affairs, expressing the relationship between l and ϑ̂
in an implicit form, suitable for arbitrary (not necessarily holonomic) systems. To this end,
we resort once again to the fact that the difference

ϑ := du− l̂∗(ϑ̂) = L dt + ϕiω̃i (3.12)

is (the pull-back of) a 1-form over A, and consider the exterior differential = dϑ , identical,
up to a sign, to the curvature of the connection 1-form l̂∗(ϑ̂).

Let X → X  denote the linear endomorphism between vectors and 1-forms induced
by  on A. For vertical vectors X = XA ∂

∂zA
, a straightforward comparison with equation

(3.12) provides the explicit representation,

X  = LX(ϑ) = XA
[(

∂L

∂zA
− ϕi ∂ψ

i

∂zA

)
dt +

∂ϕi

∂zA
ω̃i

]
. (3.13)

From this we derive the following basic conclusions:

• A necessary and sufficient condition for the correspondence (3.13) to map vertical vectors
into contact 1-forms is that the functionsL(t, qi, zA) and ϕi(t, qi, zA) involved in the local
representation of the section l and of the connection ϑ̂ satisfy the consistency relations,

∂L

∂zA
= ϕi ∂ψ

i

∂zA
A = 1, . . . , r. (3.14)

Under the stated circumstance, l and ϑ̂ will be said to form a Lagrangian pair over A.
The 1-form (3.12) will be called the Poincaré–Cartan 1-form of (l, ϑ̂), and the exterior
differential = dϑ the associated Poincaré–Cartan 2-form.
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Note that, in view of the identity

∂ḟ

∂zA
= ∂

∂zA

(
∂f

∂t
+
∂f

∂qi
ψi

)
= ∂f

∂qi

∂ψi

∂zA

the requirement (3.14) is invariant under arbitrary gauge transformations u → u + f(⇒ L→ L + ḟ , ϕi → ϕi + ∂f

∂qi

)
;

• Given any Lagrangian pair (l, ϑ̂), the restriction of the map X → X  to the vertical
bundle will be denoted by g : V (A)→ C(A). Comparison with equation (3.13) yields
the explicit expression

g

(
∂

∂zA

)
= ∂ϕi

∂zA
ω̃i A = 1, . . . , r. (3.15)

Through equation (3.15), every Lagrangian pair (l, ϑ̂) determines a (possibly singular)
scalar product between vertical vectors, based on the prescription (see equations (2.9),
(2.22) and (3.15))

(X, Y ) := 〈X‖g(Y )〉 = XAYB ∂ϕi
∂zB

∂ψi

∂zA
. (3.16)

Introducing the notation

GAB :=
(
∂

∂zA
,
∂

∂zB

)
= ∂ϕi

∂zB

∂ψi

∂zA
(3.17)

equation (3.14) yields the symmetry relation

GAB = ∂2L

∂zA∂zB
− ϕi ∂

2ψi

∂zA∂zB
= GBA (3.18)

mathematically equivalent to (X, Y ) = (Y,X).
Note that, by construction, the scalar product (3.16) depends on the 1-form ϑ̂ , but is

independent of the section l. Conversely, we can state

Proposition 3.1. A contact connection ϑ̂ may be completed (locally) to a Lagrangian pair
(l, ϑ̂) if and only if the functions ϕi(t, qi, zA) involved in the representation (3.10) satisfy the
symmetry requirement

∂ϕi

∂zA

∂ψi

∂zB
= ∂ϕi

∂zB

∂ψi

∂zA
∀A,B = 1, . . . , r. (3.19)

Under the stated assumption, the section l is determined up to an arbitrary transformation
l→ l + �(t, qi).

Proof. Equations (3.19) are mathematically equivalent to the conditions

∂

∂zA

(
ϕi
∂ψi

∂zB

)
− ∂

∂zB

(
ϕi
∂ψi

∂zA

)
= 0

i.e. to the local solvability of the system

∂L

∂zA
= ϕi ∂ψ

i

∂zA

with the ‘unknown’ L = L(t, qi, zA) determined up to an arbitrary function �(t, qi). The
result is invariant under arbitrary transformationsϕi → ϕi+

∂f

∂qi
, provided thatL is transformed

into L + df
dt . All assertions of proposition 3.1 follow easily from this fact. �
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By analogy with the holonomic case, a Lagrangian pair (l, ϑ̂) will be called regular if
and only if the associated scalar product (3.16) is non-degenerate, i.e. if and only if the matrix
(3.17) is everywhere non-singular on A. More generally, a contact connection ϑ̂ will be called
regular if and only if it may be completed locally to a regular Lagrangian pair.

Under the regularity assumption, recalling the definition of the Chetaev bundle χ(A), it
is an easy matter to verify that, at each z ∈ A, the image of the vertical space Vz(A) under the
map (3.15) is an r-dimensional subspace g(Vz(A)) ⊂ Cz(A) satisfying the relation2

g(Vz(A)) ∩ χz(A) = {0}. (3.20)

By varying z we conclude

Proposition 3.2. Every regular contact connection determines a splitting of the contact bundle
C(A) into the direct sum

C(A) = g(V (A)) ⊕A χ(A). (3.21)

The relevance of proposition 3.2 in the study of the reactive forces will be discussed in a
forthcoming paper. At present, we shall concentrate on the relationship between Lagrangian
pairs and dynamical flows on A. To this end, given any Lagrangian pair (l, ϑ̂), we consider the
ideal of exterior differential forms on A generated by the Poincaré–Cartan 2-form of (l, ϑ̂)
and by the Chetaev 1-forms, and denote by D(l, ϑ̂) (D for short) the associated characteristic
distribution,

D := {X | X ∈ T (A),X  ∈ χ(A),X χ(A) = {0}}. (3.22)

We have then the following:

Theorem 3.1. Given any regular Lagrangian pair (l, ϑ̂) on A, described locally by
equations (3.6) and (3.10), the associated characteristic distribution (3.22) coincides with the
linear span of a dynamical flow Z, uniquely determined by the Lagrange–Chetaev equations(

Z(ϕi)− ∂L

∂qi
+ ϕk

∂ψk

∂qi

)
∂ψi

∂zA
= 0. (3.23)

Proof. A straightforward check shows that the most general vector X satisfying X ν =
0,∀ν ∈ χ(A) is necessarily of the form

X = X0

(
∂

∂t
+ ψi

∂

∂qi

)
+XA

∂ψi

∂zA

∂

∂qi
+ V A

∂

∂zA
(3.24)

for arbitrary choices of X0,XA and V A. At the same time, taking equations (3.12) and (3.14)
into account, the Poincaré–Cartan 2-form of (l, ϑ̂) is easily recognized to have the local
expression

 = d(L dt + ϕiω̃i) =
[(
ϕk
∂ψk

∂qi
− ∂L

∂qi

)
dt + dϕi

]
∧ ω̃i . (3.25)

In view of equation (3.25), the characteristic distribution (3.22) consists of the totality of
vectors of the form (3.24) satisfying the requirement(

ϕk
∂ψk

∂qi
− ∂L

∂qi

) (
X0ω̃i −XA ∂ψ

i

∂zA
dt

)
+ 〈X, dϕi〉ω̃i − XA ∂ψ

i

∂zA
dϕi ∈ χ(A).

2 Indeed for any X ∈ Vz(A), the condition 〈g(X), Y 〉 = 0,∀Y ∈ Vz(A) implies X = 0, thus establishing in one step
both the injectivity of g and equation (3.20).



6726 E Massa et al

Using the expansion

dϕi =
(
∂ϕi

∂t
+
∂ϕi

∂qk
ψk

)
dt +

∂ϕi

∂qk
ω̃k +

∂ϕi

∂zB
dzB

and recalling the definition of χ(A), the latter condition splits into the system

XA
∂ψi

∂zA

(
ϕk
∂ψk

∂qi
− ∂L

∂qi
+
∂ϕi

∂t
+
∂ϕi

∂qk
ψk

)
= 0 XA

∂ψi

∂zA

∂ϕi

∂zB
= 0[

X0

(
ϕk
∂ψk

∂qi
− ∂L

∂qi
+
∂ϕi

∂t
+
∂ϕi

∂qk
ψk

)
+XA

∂ψk

∂zA

(
∂ϕi

∂qk
− ∂ϕk
∂qi

)
+ V A ∂ϕi

∂zA

]
∂ψi

∂zB
= 0.

From this, taking definition (3.17) into account, it is easily seen that, under the regularity
assumption detGAB �= 0, the characteristic distribution (3.22) coincides with the linear module
spanned by the vector field

Z = ∂

∂t
+ ψi

∂

∂qi
+ ZA

∂

∂zA
(3.26a)

with components ZA uniquely determined by the system(
ϕk
∂ψk

∂qi
− ∂L

∂qi
+
∂ϕi

∂t
+ ψk

∂ϕi

∂qk
+ ZA

∂ϕi

∂zA

)
∂ψi

∂zB
= 0. (3.26b)

Equation (3.26a) shows that Z is a dynamical flow over A, while equations (3.26b) reproduce
the content of the Lagrange–Chetaev equations (3.23). �

Equivalent representations of equations (3.23) are

Z

(
∂L

∂zA

)
− ∂L

∂qi

∂ψi

∂zA
= ϕk

[
Z

(
∂ψk

∂zA

)
− ∂ψ

k

∂qi

∂ψi

∂zA

]

obtained by comparison with equation (3.14), and especially useful in the presence of linear
kinetic constraints, and

Z(ϕi)− ∂L

∂qi
+ ϕk

∂ψk

∂qi
= λσ i∗

(
∂gσ

∂q̇i

)

relying on the extrinsic representation (2.8b) for the submanifold A, and consisting of n
independent equations, for the simultaneous determination of the dynamical flow Z, and the
unknown multipliers λσ (t, qi, q̇ i).

In any case, the important point is that, independently of the specific formulation, every
regular Lagrangian pair (l, ϑ̂) gives rise to a well-posed problem of motion through the
associated characteristic distribution (3.22). In view of equations (3.26a) and (3.26b) the
equations of motion take the explicit form


dqi

dt
= ψi(t, qi, zA)

dzA

dt
= ZA(t, qi, zA) = −GAB

(
ϕk
∂ψk

∂qi
− ∂L

∂qi
+
∂ϕi

∂t
+
∂ϕi

∂qk
ψk

)
∂ψi

∂zB

whereGAB denotes the inverse matrix of GAB .
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3.3. Extrinsic formulation

Although not explicitly relevant for the subsequent discussion, it is worth spending a few
words on the relationship between Lagrangian pairs and extrinsic Lagrangian sections. To
this end, we resume the notation of section 3.1, and denote generically by i any of the maps
joining the front (‘non-holonomic’) face of diagram (3.1) to the rear (‘holonomic’) one, and
by i∗ the associated pull-back3.

Given an extrinsic Lagrangian section l̃ : j1(Vn+1) → L(Vn+1), expressed locally as
u̇ = L̃(t, qi, q̇ i ), let dvψ̂ l̃ denote the connection on j1(P,�)→ L(Vn+1) induced by l̃ through
the algorithm (2.18). It is then an easy matter to verify that (i∗(l̃), i∗(dvψ̂ l̃)) is automatically a
Lagrangian pair on A, and that, whenever l̃ is regular, so is (i∗(l̃), i∗(dvψ̂ l̃ )). In other words,
(regular) extrinsic Lagrangian sections induce (regular) Lagrangian pairs.

We shall now establish a local converse of this result, namely that every (regular)
Lagrangian pair is generated locally by a (regular) extrinsic Lagrangian section. To this
end, we start with an elementary result of linear algebra.

Lemma 3.1. Consider any square matrix of the form

� =
(
A B
tB C

)
.

Then, under the assumption detA �= 0, a necessary and sufficient condition for the non-
singularity of � is the non-singularity of the matrix C − tBA−1B.

Proof. The kernel of � consists of all vectorsX = (
U

V

)
satisfying

�(X) =
(
AU + BV
tBU + CV

)
=

(
0
0

)
.

Whenever the matrix A is non-singular, this is equivalent to the pair of conditions

U = −A−1BV (−tBA−1B + C)V = 0

whence the result. �

Theorem 3.2. Let (l, ϑ̂) be any (regular) Lagrangian pair on A. Then, for each z ∈ A
there exists a neighbourhood U of i(z) in j1(Vn+1), and a (regular) section l̃ : U → L(Vn+1)

satisfying i∗(l̃) = l and i∗(dvψ̂ l̃) = ϑ̂ everywhere on U ∩A.

Proof. Let gσ (t, qi, q̇ i) = 0, σ = 1, . . . , n − r denote any Cartesian representation of A.
Extend the coordinates zA on A to functions zA(t, qi, q̇ i) on j1(Vn+1). The variables
t, qi, zA, gσ are then independent in a neighbourhood U of each point i(z), z ∈ A, thus
allowing the q̇ i to be expressed in the form q̇ i = q̇ i(t, qi, zA, gσ ). Of course, by definition,
we have the identities i∗(gσ ) = i∗(q̇i − ψi) ≡ 0. Given any trivialization u of P , let
u̇ = L(t, qi, zA) and ϑ̂ = ω̃0 + ϕi(t, qi, zA)ω̃i denote the corresponding local representation
of the pair (l, ϑ̂). Define a function L̃ on U on the basis of the requirement

L̃(t, qi, q̇ i) = L + ϕk(q̇
k − ψk) + 1

2Qαβg
αgβ (3.27)

where Qαβ(t, q
i, q̇ i) denotes a (so far) arbitrary matrix function. Under an arbitrary change

of trivialization u→ u + f , equation (3.27) implies the transformation law

L̃→ L̃ +
∂f

∂t
+ ψk

∂f

∂qk
+
∂f

∂qk
(q̇k − ψk) = L̃ +

df

dt
3 For example, i∗(l̃) := l̃ · i will denote the restriction of the section l̃ to the submanifold A, i∗(dvψ̂ l̃ ) the pull-back
of the 1-form dvψ̂ l̃ to the submanifold jA1 (P,�) ⊂ j1(P,�), etc.
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showing that the position u̇ = L̃(t, qi, q̇ i) does indeed define a section l̃ of the bundle
L(Vn+1) → j1(Vn+1). By equation (3.27), taking the consistency conditions (3.14) into
account, we derive the relations

∂L̃

∂q̇j
= ∂ϕk

∂zB

∂zB

∂q̇j
(q̇k − ψk) + ϕj +

1

2

∂Qαβ

∂q̇j
gαgβ +Qαβg

α ∂g
β

∂q̇j
. (3.28)

Now:

• independently of the choice of the matrix Qαβ , equations (3.27) and (3.28) provide the
identifications

i∗(L̃) = L i∗
(
∂L̃

∂q̇j

)
= ϕj

mathematically equivalent to i∗(l̃) = l, i∗(dvψ̂ l̃) = ϑ̂ ;
• at each point z ∈ A, recalling definition (3.17) as well as the relation i∗(q̇i) = ψi ,

equations (3.28) yield the representation

∂2L̃

∂q̇i∂q̇j
= ∂ϕj

∂zA

∂zA

∂q̇i
+
∂ϕi

∂zA

∂zA

∂q̇j
−GAB

∂zA

∂q̇i

∂zB

∂q̇j
+Qαβ

∂gα

∂q̇h

∂gβ

∂q̇k
.

From this, it is an easy matter to verify that the non-singularity of ∂2L̃
∂q̇i∂ q̇j

at z is mathematically
equivalent to the non-singularity of the matrix


∂2L̃

∂q̇i∂q̇j

∂q̇i

∂zA

∂q̇j

∂zB

∂2L̃

∂q̇i∂q̇j

∂q̇i

∂zA

∂q̇j

∂gβ

∂2L̃

∂q̇i∂q̇j

∂q̇i

∂gα

∂q̇j

∂zB

∂2L̃

∂q̇i∂q̇j

∂q̇i

∂gα

∂q̇j

∂gβ


 =

(
G N
tN Q

)

with G = GAB,Q = Qαβ and N = NAβ := ∂ϕi
∂zA

∂q̇i

∂gβ
.

In particular, under the regularity assumption detG �= 0, lemma 3.1 shows that any choice
of the matrix Qαβ satisfying the condition det(Q − tNG−1N) �= 0 is sufficient to ensure the
regularity of the local section l̃, associated with the given Lagrangian pair. �

Theorem 3.2 legitimates the extrinsic approach to the equations of motion outlined in
section 3.1. The analysis helps to clarify that, in general, the determination of an extrinsic
Lagrangian section l̃ yielding the correct equations of motion on A has nothing to do with the
description of the dynamical behaviour of the unconstrained system.

Corollary 3.1. Let (l, ϑ̂) and l̃ denote respectively a non-singular Lagrangian pair and a
non-singular Lagrangian section, related by the pull-back algorithm described in theorem 3.2.
Then, the dynamical flow Z induced by (l, ϑ̂) on A is i-related to the dynamical flow Z̃ on
j1(Vn+1) implicitly defined by the 2n− r equations,

Z̃

(
∂L̃

∂q̇k

)
− ∂L̃

∂qk
= λσ ∂g

σ

∂q̇k
(3.29a)

Z̃(gσ ) = 0. (3.29b)

Proof. Owing to the assumed regularity of l̃, equations (3.29a) and (3.29b) determine a unique
dynamical flow Z̃ on j1(Vn+1). The latter is automatically tangent to A, and i-related to a
dynamical flow Z on A, uniquely determined by the conditions

Z

[
i∗

(
∂L̃

∂q̇k

)]
= i∗

(
∂L̃

∂qk
+ λσ

∂gσ

∂q̇k

)
. (3.30)
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Comparison with equations (3.27) and (3.28) provides the identifications

i∗
(
∂L̃

∂q̇k

)
= ϕk i∗

(
∂L̃

∂qk

)
= ∂L

∂qk
− ϕi ∂ψ

i

∂qk
.

Equations (3.30) are therefore identical to the Lagrange–Chetaev equations (3.23) involved in
the determination of the dynamical flow induced by the pair (l, ϑ̂) on A. �

4. Hamiltonian formulation

4.1. The Legendre map

The intrinsic Lagrangian approach outlined in section 3.2 has a natural Hamiltonian
counterpart, based on a non-holonomic analogue of the Legendre transformation. Exactly as in
the holonomic case [4], the algorithm relies on the fact that the attributes of the principal fibre
bundle j1(P,Vn+1) → H(Vn+1) include a geometrically distinguished canonical connection
�, expressed in coordinates as

� = du− p0 dt − pi dqi. (4.1)

On this basis, taking the results of section 3.2 into account, we state

Proposition 4.1. Every regular contact connection ϑ̂ determines a bundle map

jA1 (P,�)
�−−−−→ j1(P,Vn+1)� �

P P

(4.2)

fibred over P , and satisfying the condition

�∗(�) = ϑ̂. (4.3)

The correspondence (4.2) induces an overall map of the non-holonomic Lagrangian bundles
into the (holonomic) Hamiltonian ones, summarized in the commutative diagram

�

�

�

�

� �

� �

������

������

������

������

L(A) A

Lc(A)jA1 (P,�)

�(Vn+1)

Hc(Vn+1)j1(P,Vn+1)

H(Vn+1)

�̃ λ

�̂�

(4.4)

where

• the front and rear faces reproduce diagrams (3.9) and (2.26);
• each pair of arrows joining an edge on the front (Lagrangian) face with an edge on the

rear (Hamiltonian) one represents a principal bundle homomorphism.
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If ϑ̂ is a regular contact connection, all maps from the Lagrangian to the Hamiltonian side of
diagram (4.4) are immersions.

Proof. In view of equations (3.10) and (4.1), the requirement (4.3) singles out a unique
differentiable map � : jA1 (P,�)→ j1(P,Vn+1), expressed in coordinates as

t = t qi = qi u = u p0 = u̇− ϕiψi pi = ϕi(t, qi, zA). (4.5)

By equation (3.17) it is also seen that, whenever ϑ̂ is a regular contact connection, the Jacobian
∂(p1···pn)
∂(z1 ···zr ) has rank r everywhere on A. All assertions of proposition 4.1 are straightforward

consequences of these facts. �

For dynamical purposes, let us now concentrate on the lower face of diagram (4.4), namely

L(A) �̃−−−−→ H(Vn+1)� �
A λ−−−−→ �(Vn+1)

. (4.6)

By analogy with the holonomic case, the correspondence λ : A → �(Vn+1) will be called
the (non-holonomic) Legendre map associated with the connection ϑ̂ . Comparison with
equation (4.5) provides the local representation

pi = ϕi(t, qi, zA) (4.7)

showing that knowledge of λ is equivalent to knowledge of ϑ̂ .

Definition 4.1. A regular contact connection ϑ̂ will be called hyperregular if and only if
the associated Legendre map is an embedding, i.e. if and only if the image space λ(A) is a
submanifold of �(Vn+1). A regular Lagrangian pair (l, ϑ̂) will be called hyperregular if and
only if ϑ̂ is a hyperregular connection.

Remark 4.1. Assuming the simultaneous validity of both circumstances:

• A is an affine subbundle of j1(Vn+1) (⇔ the kinetic constraints are linear in the velocities);
• λ : A→ �(Vn+1) is an affine map (⇔ the pi depend linearly on the velocities);

it is easily seen that every regular connection is automatically hyperregular.

Remark 4.2. Exactly as happened in the Lagrangian context, given any submanifold
i : S → �(Vn+1) fibred over Vn+1, the Hamiltonian bundles (2.26) may be pulled back
to S. The resulting structure, summarized in the diagram

�

�

�

�

� �

� �

������

������

������

������

H(S) S

Hc(S)jS1 (P,Vn+1)

�(Vn+1)

Hc(Vn+1)j1(P,Vn+1)

H(Vn+1)

(4.8)

may be regarded as a sort of ‘Hamiltonian analogue’ of the situation described in section 3.1.
Consistently with this viewpoint, the principal fibrations H(S) → S and Hc(S) → S
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will be respectively called the non-holonomic Hamiltonian bundle and the non-holonomic
co-Hamiltonian bundle over S.

The pull-back of the Liouville 1-form (2.24) through the upper-left arrow of
diagram (4.8) defines a 1-form �̂ on jS1 (P,Vn+1), henceforth called the non-holonomic
Liouville 1-form. Exactly as in section 2.3, it is easily recognized that �̂ has the nature of a
connection 1-form over the principal bundle jS1 (P,Vn+1)→ H(S). The exterior differential
̂ := −d�̂, identical, up to a sign, to the curvature of the Liouville connection, is therefore a
geometrical object over the base manifold H(S). As we shall see, this fact plays an important
role in the Hamiltonian formulation of non-holonomic mechanics.

The previous arguments are especially relevant in connection with definition 4.1. In
fact, given any hyperregular contact connection ϑ̂ , let S := λ(A) denote the submanifold of
�(Vn+1) determined by the Legendre map (4.7). Taking both proposition 4.1 and remark 4.2
into account, it is then an easy matter to verify that diagram (4.4) gives rise to an overall
isomorphism

�

�

�

�

� �

� �

������

������

������

������

L(A) A

Lc(Vn+1)jA1 (P,�)

S

Hc(S)jS1 (P,Vn+1)

H(S)

(4.9)

establishing a substantial symmetry between the non-holonomic Lagrangian set-up and the
non-holonomic Hamiltonian one.

The situation is made more transparent by removing any hierarchy between A and S, and
considering both of them on a perfectly equal footing as submanifolds iA : A → j1(Vn+1),

iS : S → �(Vn+1), mutually related by a diffeomorphism � : A→ S. By analogy with the
holonomic case, we shall call � the Legendre transformation.

The Lagrangian scenario is then recovered by regarding A as the primary geometrical
environment, and summarizing both S and � in the Legendre map λ := iS · � : A→ �(Vn+1).
The outline is completed by adopting a ‘fully Lagrangian’ picture of the map λ, namely relating
it to the assignment of a hyperregular contact connection over A.

In a perfectly symmetric way, we may envisage a Hamiltonian scenario, based on the
choice of S as the primary space. The missing information (the submanifold A and the
Legendre transformation �) is then summarized in an embedding κ := iA ·�−1 : S → j1(Vn+1),
henceforth called the Legendre inverse map. To complete the set-up we now have to look
for a ‘fully Hamiltonian’ picture of κ , relating it to a suitable geometrical object over the
submanifold S.

To this end, let us denote by (V (S))0 the bundle of semibasic 1-forms over S, identified
with the annihilator of the vertical bundle over S.

Definition 4.2. A linear functional T on (V (S))0 satisfying T(dt) ≡ 1 will be called a
dynamical scheme on S. The associated kernel ker(T) ⊂ (V (S))0, henceforth denoted by
C(S), will be called a contact co-distribution over S. Every section σ : S → C(S) will be
called a contact 1-form over S.
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Given any dynamical scheme T on S, a straightforward argument shows that the totality
of vectors X ∈ T (S) satisfying the condition

〈X, σ 〉 = T(σ ) ∀σ ∈ (V (S))0 (4.10)

forms an affine subbundle τ (S) ⊂ T (S), modelled on the vertical bundle V (S). We shall
call the latter the dynamical bundle associated with the scheme T on S. Every section
Z : S → τ (S) will be called a dynamical flow over S.

We let the reader verify that the assignment of the dynamical bundle τ (S) is
mathematically equivalent to the assignment of the dynamical scheme T, and that every
pair of dynamical flows Z,Z′ : S → τ (S) differs by a vertical vector field.

The relationship between definition 4.2 and the Legendre inverse map is clarified by the
following:

Proposition 4.2. Every differentiable map κ : S → j1(Vn+1) fibred over Vn+1 determines a
dynamical scheme T on S, uniquely defined by the requirement

T(dqi) = κ∗(q̇i). (4.11)

The contact co-distribution C(S) associated with T coincides with the pull-back
κ∗(C(j1(Vn+1))) of the contact bundle over j1(Vn+1). Conversely, knowledge of T is
mathematically equivalent to knowledge of the map κ .

The proof is entirely straightforward, and is left to the reader.
For further use, we observe that the assignment of a dynamical scheme T determines not

only a corresponding contact co-distributionC(S), but also a bilinear pairing between vertical
vectors and contact 1-forms at each point ς ∈ S. Indeed, denoting by κ the map associated
with T through equation (4.11), it is easily recognized that:

• the push-forward (κς)∗ maps the vertical space Vς(S) into (a subspace of) the vertical
space Vκ(ς)(j1(Vn+1));
• the pull-back (κς)∗∗ sets up a one-to-one correspondence between the vector spaces
Cκ(ς)(j1(Vn+1)) and Cς(S).

For any V ∈ Vς(S), σ ∈ Cς(S), the required pairing is then expressed in terms of the
analogous pairing (2.3) in j1(Vn+1) through the prescription

〈V ‖σ 〉 := 〈κ∗(V )‖σ̂ 〉 (4.12)

with σ̂ ∈ Cκ(ς)(j1(Vn+1)) uniquely defined by the requirement σ = (κς)∗∗(σ̂ ).
Definition 4.3. The annihilator of the vertical spaceV (S) under the pairing (4.12), henceforth
denoted by χ(S), will be called the Chetaev bundle over S induced by the dynamical
scheme T.

In coordinates, the previous arguments are formalized by adopting a representation of the
submanifold S of the form

pi = ϕi(t, q1, . . . , qn, µ1, . . . , µr). (4.13)

This provides the local representations

�̂ = du− p0 dt − ϕi(t, q1, . . . , qn, µ1, . . . , µr) dqi (4.14a)

for the non-holonomic Liouville 1-form, and

̂ = dp0 ∧ dt + dϕi ∧ dqi (4.14b)

for the associated curvature 2-form.
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The Legendre transformation is described locally by the system

µA = µA(t, q1, . . . , qn, z1, . . . , zr) (4.15a)

with inverse

zA = zA(t, q1, . . . , qn, µ1, . . . , µr). (4.15b)

Equations (4.13) and (4.15a), together, yield back the Legendre map (4.7), and therefore also
the components of the contact connection ϑ̂ . Conversely, equations (4.15b), together with the
representation (2.8a) of the submanifold A, provide a description of the Legendre inverse map
in terms of the variables t, qi, µA in the local form

q̇ i = ψi(t, q1, . . . , qn, µ1, . . . , µr) (4.16)

with ψi(t, qi, µA) := ψi(t, qi, zA(t, qi, µA)).
The dynamical scheme determined by map (4.16) is described by the equations

T(dqi) = ψi(t, q1, . . . , qn, µ1, . . . , µr) T(dt) = 1 (4.17a)

while the associated contact co-distribution is locally spanned by the 1-forms,

ω̃i := dqi − T(dqi) dt = dqi − ψi(t, qi, µA) dt . (4.17b)

The dynamical flows associated with T have local expressions of the form

Z = ∂

∂t
+ ψi

∂

∂qi
+ ZA

∂

∂µA
(4.18)

for arbitrary choice of the components ZA(t, qi, µA). For any V = VA
∂
∂µA
∈ V (S),

σ = σiω̃i ∈ C(S), the pairing (4.12) takes the explicit form

〈V ‖σ 〉 =
〈
VA
∂ψj

∂µA

∂

∂q̇j

∥∥∥∥ σiω̃i
〉
= σiVA ∂ψ

i

∂µA
. (4.19)

In particular, a contact 1-form ν = νiω̃i belongs to the Chetaev bundle χ(S) induced by T if
and only if the components νi satisfy the Chetaev conditions

νi
∂ψi

∂µA
= 0. (4.20)

4.2. Hamiltonian pairs

We now discuss the dynamical implications of the concepts introduced so far. To start with,
we consider the situation arising from the assignment of a hyperregular Lagrangian pair (l, ϑ̂)
on A. In this case, proceeding as in section 4.1, we can use the connection ϑ̂ to set up
the bundle homomorphism (4.4) and the associated structures (non-holonomic Hamiltonian
bundles, Legendre map, etc).

By means of the correspondence (4.6), the Lagrangian section l : A → L(A) may be
lifted to an embedding �̃ · l : A→ H(Vn+1), described in coordinates as

t = t qi = qi p0 = L(t, qi, zA)− ϕiψi pi = ϕi(t, qi, zA). (4.21)

By equation (4.21) it is easily seen that, whenever two Lagrangian pairs (l, ϑ̂), (l′, ϑ̂ ′) are
gauge equivalent, i.e. when they differ by a translation

l′ = l +
∂f

∂t
+
∂f

∂qi
ψi ϑ̂ ′ = ϑ̂ − ∂f

∂qi
ω̃i
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with f = f (t, qi) ∈ F (Vn+1), the corresponding sections �̃ · l, �̃′ · l′ are similarly related by
the action of the gauge group on H(Vn+1), namely

p0 · �̃′ · l′ = p0 · �̃ · l +
∂f

∂t
pi · �̃′ · l′ = pi · �̃ · l +

∂f

∂qi
.

Let � denote the image space �̃ · l(A) ⊂ H(Vn+1). In view of definition 4.1, in the
hyperregular case, � is a submanifold of co-dimension 1 of the non-holonomic Hamiltonian
bundle H(S), fibred over S. Accordingly, there exists a unique section h : S → H(S) giving
rise to the commutative diagram

L(A) �̃−−−−→ H(S)
l

� �h
A λ−−−−→ S

. (4.22)

We shall call h the (non-holonomic) Hamiltonian section. Setting

H := ϕiψi − L (4.23)

and referring the manifolds S and H(S) respectively to local coordinates t, qi, µA and
t, qi, µA, p0, equations (4.15b) and (4.21) provide a representation of h in the ‘Cartesian’
form

p0 +H(t, qi, µA) = 0 (4.24)

while the consistency relations (3.14) are transformed into

∂H

∂µA
− ψi ∂ϕi

∂µA
= ϕi ∂ψ

i

∂µA
− ∂L

∂µA
=

(
ϕi
∂ψi

∂zB
− ∂L

∂zB

)
∂zB

∂µA
= 0. (4.25)

The previous results may be reformulated strictly in Hamiltonian terms. For this purpose,
let us consider the geometrical set-up determined by the simultaneous assignment of a section
h : S → H(S), expressed locally as p0 = −H(t, qi, µA), and of a dynamical scheme T,
described locally by the equations T(dqi) = ψi(t, qi, µA). By means of h, the curvature
2-form (4.14b) associated with the non-holonomic Liouville connection �̂ may be pulled
back to S. The resulting expression

 := h∗(̂) = −dH ∧ dt + dϕi ∧ dqi (4.26)

will be called the (non-holonomic) Poincaré–Cartan 2-form of h.

Definition 4.4. A Hamiltonian section h : S → H(S) and a dynamical scheme T are said
to form a Hamiltonian pair if and only if the correspondence X → X  determined by the
Poincaré–Cartan 2-form (4.26) maps vertical vectors into contact 1-forms, i.e. if and only if
the relation

T(V ) ≡ 0 (4.27)

holds identically for any V ∈ V (S).
In local coordinates, setting V = VA

∂
∂µA

, and preserving the notation (4.17b) for the

1-forms ω̃i , we have the explicit expression

V  = VA
(
− ∂H
∂µA

dt +
∂ϕi

∂µA
dqi

)
= VA

[(
− ∂H
∂µA

+ ψi
∂ϕi

∂µA

)
dt +

∂ϕi

∂µA
ω̃i

]
.

The requirement (4.27) is therefore equivalent to the validity of the conditions

∂H

∂µA
= ψi ∂ϕi

∂µA
A = 1, . . . , r (4.28a)
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identical to equations (4.25). They, in turn, imply the local representation

V  = VA ∂ϕi
∂µA

ω̃i ∀V ∈ (V (S))0. (4.28b)

A comparison of equation (4.28b) with equation (4.19) shows that every Hamiltonian pair
determines a scalar product between vertical vectors, based on the prescription

(X, Y ) := 〈X‖Y 〉 =
〈
X

∥∥∥∥YB ∂ϕi∂µB
ω̃i

〉
= XAYB ∂ψ

i

∂µA

∂ϕi

∂µB
(4.29)

(see the analogous expression (3.16), valid in the Lagrangian context). Setting

KAB :=
(

∂

∂µA
,
∂

∂µB

)
= ∂ψi

∂µA

∂ϕi

∂µB
(4.30)

equation (4.28a) implies the symmetry relations

KAB = ∂2H

∂µA∂µB
− ψi ∂2ϕi

∂µA∂µB
= KBA (4.31)

mathematically equivalent to (X, Y ) = (Y,X). Note that, by construction, the scalar product
(4.29) depends on the dynamical scheme T, but is independent of the section h. Conversely,
we have the following:

Proposition 4.3. A dynamical scheme T may be completed (locally) to a Hamiltonian pair
(h,T) if and only if the functions ψi(t, qi, µA) := T(dqi) involved in the representation of T
satisfy the symmetry requirement

∂ϕi

∂µA

∂ψi

∂µB
= ∂ϕi

∂µB

∂ψi

∂µA
. (4.32)

Under the stated assumption, the section h is determined up to an arbitrary transformation
h→ h + �(t, qi).

The proof is identical to the proof of proposition 3.1 and will be omitted.
In analogy with the Lagrangian case, a Hamiltonian pair (h,T) will be called regular if

and only if the associated scalar product (4.29) is non-degenerate, i.e. if and only if the matrix
(4.30) is everywhere non-singular on S. It will be called hyperregular if, in addition, the map
κ : S → j1(Vn+1) induced by T is an embedding. A dynamical scheme T will be called
regular (hyperregular) if and only if it may be completed locally to a regular (hyperregular)
Hamiltonian pair. Recalling definition 4.3, we have then the following:

Proposition 4.4. The contact co-distribution associated with any regular dynamical scheme
T splits into the direct sum

C(S) = χ(S)⊕S g(V (S)) (4.33)

where χ(S) and g(V (S)) denote respectively the Chetaev bundle induced by T and the image
of the vertical space V (S) under the map (4.28b).

The proof is a replica of the one given for proposition 3.2, and will be omitted.
We finally discuss the role of the regular Hamiltonian pairs in the representation of

dynamical flows over S, meant as sections Z : S → τ (S) of the dynamical bundle.
Once again, the argument is essentially a restatement of the analogous result established in
section 3.2: given any regular Hamiltonian pair (h,T)we consider the exterior ideal generated
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by the Poincaré–Cartan 2-form (4.26) and by the Chetaev 1-forms, and denote by D the
associated characteristic distribution,

D := {X|X ∈ T (S),X  ∈ χ(S),X χ(S) = {0}}. (4.34)

We have then the following:

Theorem 4.1. Given any regular Lagrangian pair (h,T), the characteristic distribution (4.34)
is one-dimensional, and coincides with the linear span of a dynamical flowZ over S, uniquely
determined by the equation(

Z(ϕi) +
∂H

∂qi
− ψk ∂ϕk

∂qi

)
∂ψi

∂µA
= 0. (4.35)

Proof. A straightforward check shows that the most general vector X satisfying X ν = 0,
∀ν ∈ χ(S) is necessarily of the form

X = X0

(
∂

∂t
+ ψi

∂

∂qi

)
+XA

∂ψi

∂µA

∂

∂qi
+ VA

∂

∂µA
(4.36)

for arbitrary choice of X0,XA and VA. At the same time, taking equations (4.17b) and (4.28)
into account, the Poincaré–Cartan 2-form (4.26) may be written locally as

 = (−dH + ψk dϕk) ∧ dt + dϕi ∧ ω̃i =
[(
∂H

∂qi
− ψk ∂ϕk

∂qi

)
dt + dϕi

]
∧ ω̃i . (4.37)

In view of equation (4.37), the characteristic distribution (4.34) consists of the totality of
vectors of the form (4.36) satisfying the condition(

∂H

∂qi
− ψk ∂ϕk

∂qi

) (
X0ω̃i −XA ∂ψ

i

∂µA
dt

)
+ X(ϕi)ω̃i − XA ∂ψ

i

∂µA
dϕi ∈ χ(S).

From this, taking equations (4.20) and (4.30) into account, and proceeding as in section 3.2,
it may be readily seen that, under the regularity assumption detKAB �= 0, the required
distribution is spanned by a single vector field

Z = ∂

∂t
+ ψi

∂

∂qi
+ ZA

∂

∂µA
(4.38)

uniquely determined by the requirement (4.35). Comparison with equation (4.18) shows that
Z is a dynamical flow over S. �

According to theorem 4.1, every regular Lagrangian pair (h,T) gives rise to a well-posed
problem of motion through the associated characteristic distribution (4.34). The equations of
evolution for the unknowns qi(t), µA(t) are easily obtained from equations (4.35) and (4.38).
The details are left to the reader.

4.3. Canonical frameworks

The symmetry between the Lagrangian and the Hamiltonian approaches is further enhanced
through the adoption of an ‘intermediate’ set-up, consisting of the simultaneous and
independent assignment of both submanifolds A and S.

Definition 4.5. A pair of mutually diffeomorphic submanifolds iA : A→ j1(Vn+1), iS : S →
�(Vn+1) will be called a canonical framework over Vn+1. In a given canonical framework
(A,S):
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• a contact connection ϑ̂ over A is called admissible if and only if the associated map
λ : A→ �(Vn+1) satisfies λ(A) ⊂ S;
• a dynamical scheme T on S is called admissible if and only if the associated map
κ : S → j1(Vn+1) satisfies κ(S) ⊂ A;
• a Lagrangian pair (l, ϑ̂) (respectively, a Hamiltonian pair (h,T)) is called admissible if

and only if the contact connection ϑ̂ (respectively, the dynamical scheme T) is admissible.

In view of definition 4.5, every admissible contact connection ϑ̂ is uniquely determined
by a corresponding differentiable map λ̂ : A → S, related to the Legendre map λ by the
factorization λ = iS · λ̂. In a similar way, every admissible dynamical scheme T is determined
by the map κ̂ : S → A involved in the factorization κ = iA · κ̂. Through the graphs of the
associated maps, the admissible contact connections and the admissible dynamical schemes
may therefore be identified with submanifolds of the product bundle A ×νn+1 S, projecting
diffeomorphically onto A and S respectively.

The previous arguments help in overcoming the redundancy implicit in the concepts of
Lagrangian and Hamiltonian pairs, i.e. in a formalism based on the use of non-independent
geometrical objects, related to each other by consistency conditions. This aspect is clarified
by the following:

Proposition 4.5. Consider a canonical framework (A,S) over Vn+1, described locally by the
equations

q̇ i = ψi(t, q1, . . . , qn, z1, . . . , zr) (4.39a)

pi = ϕi(t, q1, . . . , qn, µ1, . . . , µr). (4.39b)

In the product bundle A×νn+1 S consider the matrix function

MA
B := ∂ϕi

∂µA

∂ψi

∂zB
. (4.40)

Then:

(a) A section l : A → L(A), with local equation u̇ = L(t, q1, . . . , qn, z1, . . . , zr ), may
be completed to a unique admissible Lagrangian pair (l, ϑ̂) if and only if the subset
G ⊂ A×νn+1 S defined implicitly by the system

∂L

∂zA
= ϕi ∂ψ

i

∂zA
(4.41a)

is a section of the bundle A×νn+1 S → A, i.e. if and only if the matrix (4.40) is everywhere
non-singular on G. Under the stated circumstance, the pair (l, ϑ̂) is regular if and only
if the restriction to the submanifold G of the projection A×νn+1 S → S is an immersion,
i.e. if and only if the matrix

∂2L

∂zA∂zB
− ϕi ∂

2ψi

∂zA∂zB
(4.41b)

is also everywhere non-singular on G. It is hyperregular if and only if G is a section of
A×νn+1 S → S.

(b) A section h : S → H(S), with local equation p0 + H(t, q1, . . . , qn, µ1, . . . , µr) = 0,
may be completed to a unique admissible Hamiltonian pair (h,T) if and only if the subset
G ⊂ A×νn+1 S defined implicitly by the system

ψi
∂ϕi

∂µA
= ∂H

∂µA
(4.42a)
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is a section of the bundle A×νn+1 S → S, i.e. if and only if the matrix (4.40) is everywhere
non-singular on G. Under the stated circumstance, the pair (h,T) is regular if and only
if the restriction to the submanifold G of the projection A×νn+1 S → A is an immersion,
i.e. if and only if the matrix

∂2H

∂µA∂µB
− ψi ∂2ϕi

∂µA∂µB
(4.42b)

is also everywhere non-singular on G. It is hyperregular if and only if G is a section of
A×νn+1 S → A.

Proof. As pointed out above, every admissible contact connection ϑ̂ over A is identified
by a corresponding map A → S, expressed locally as µA = µA(t, q

i, zA). At the same
time, equations (4.41a) are precisely the consistency conditions required in order for (l, ϑ̂)
to form a Lagrangian pair. Finally, as long as the matrix (4.40) is non-singular along G
equations (4.41a) may be solved uniquely for the µA as functions of t, qi, zA by the implicit
function theorem.

Assertion (a) follows from these facts and from the definition of regularity and
hyperregularity given in section 3.2. The proof of assertion (b) is analogous, and will be
omitted. �

Proposition 4.5 shows that, in a canonical framework, the assignment of either a
Lagrangian or a Hamiltonian section subject to suitable regularity requirements is sufficient to
determine a dynamical flow, thereby restoring a state of affairs analogous to the one occurring
in holonomic mechanics.

From an aesthetic viewpoint, this is especially worthy in the Hamiltonian context:
prescribing a canonical framework and a section h : S → H(S) is in fact equivalent to
assigning two mutually diffeomorphic submanifolds A ⊂ j1(Vn+1) and � := h(S) ⊂ H(S),
respectively providing a gauge-independent description of the kinematics of the system, and a
gauge-dependent description of its dynamics.

The details are straightforward, and are left to the reader.

Appendix A. Free Lagrangians and constrained dynamics

The following arguments emphasize the difference between extrinsic Lagrangians, meant as
tools for the representation of constrained dynamics in the sense described in section 3.3, and
free (or unconstrained) Lagrangians, expressing how the evolution of the system would look in
the absence of constraints. The first example illustrates the situation in holonomic mechanics.

Example A.1. Particle of unit mass, subject to the action of a constant force F . In Cartesian
coordinates, the evolution is described by the dynamical flow

Z̃ = ∂

∂t
+ ẋi

∂

∂xi
+ F i

∂

∂ẋi
. (A.1)

Without the loss of generality, we may assume F = Fe3 ⇒ F i = Fδi3.

Given any constant, symmetric, non-singular matrix aij , a straightforward check shows
that the function

L̃ = ahk
(

1
2 ẋ

hẋk + Fhxk
) = 1

2ahkẋ
hẋk + a3kFx

k (A.2)

provides a possible Lagrangian for the flow (A.1). In addition to the ‘natural’ choice
L̃ = T + U , corresponding to aij = δij , we have therefore a whole class of gauge-inequivalent
alternatives, all giving rise to the same equations of motion.
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Let us now restrict the mobility of the system by the positional constraint

x3 = 0.

The pull-back of the Lagrangian (A.2) to the newer configuration spacetime is

L = 1

2

2∑
A,B=1

aABẋ
AẋB +

2∑
A=1

a3AFx
A.

This gives rise to the Lagrange equations
2∑

B=1

aABẍ
B − a3AF = 0

which, in general, do not imply ẍB = 0, and therefore do not express the dynamical behaviour
of the constrained system, except for special choices of the matrix aij (including, among
others, the ‘natural’ choice aij = δij ).

Therefore, even in the holonomic context, pulling back a correct ‘unconstrained’
Lagrangian may fail to produce a Lagrangian for the constrained dynamical flow.

Example A.2. Particle of unit mass, moving in a plane, under the action of a non-conservative
force

F = −kx(e1 + e2) k = const

and subject to the non-integrable ideal kinetic constraint

ẏ = ẋ + βx.

The unconstrained dynamical flow is

Z̃ = ∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
− kx

(
∂

∂ẋ
+
∂

∂ẏ

)
. (A.3)

The constrained dynamical flow Z is obtained projecting Z̃ on the submanifold A ⊂ j1(Vn+1)

by means of the fibre metric induced by the kinetic energy T = 1
2 (ẋ

2 + ẏ2) [1, 3]. Referring
A to (global) coordinates t, x, y, ẋ, the result is

Z = ∂

∂t
+ ẋ

∂

∂x
+ (ẋ + βx)

∂

∂y
−

(
β

2
ẋ + kx

)
∂

∂ẋ
. (A.4)

A straightforward check shows that the function

L̃ = 1
2 [ẋ2 + (ẋ − ẏ)2]− 1

2kx
2 (A.5)

is a Lagrangian for the flow (A.3), but is not an extrinsic Lagrangian for the constrained flow
(A.4). The first assertion is obvious. To prove the second one,we consider the Poincaré–Cartan
1-form of L̃,

ϑ̃ = L̃ dt +
∂L̃

∂q̇k
ωk

and pull it back to the submanifold A ⊂ j1(Vn+1). We then evaluate the dynamical flow on
A resulting from the algorithm described in theorem 3.1, namely the vector field X ∈ D1(A)
defined by the conditions

X i∗(dϑ̃) ∈ χ(A) X χ(A) = {0}, 〈X, dt〉 = 1 (A.6)

where χ(A) denotes the Chetaev bundle over A. By direct calculation, we get the result

X = ∂

∂t
+ ẋ

∂

∂x
+ (ẋ + βx)

∂

∂y
− kx ∂

∂ẋ
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clearly different from the flow (A.4). Once more, this shows that, even though the Lagrangian
(A.5) carries full information on the evolution of the unconstrained system, it does not yield
the right equations of motion for the constrained one.

In spite of this fact, the constrained flow is derivable from an intrinsic Lagrangian pair
u̇ = L(t, x, y, ẋ), ϑ̂ = ω̃0 + ϕi ω̃i through equation (3.23). A straightforward check shows
that the ansatz

L = ẋ2 +
2k

β
xẋ ϕ1 = ẋ ϕ2 = ẋ +

2k

β
x (A.7)

does the job. Of course, on the basis of theorem 3.2, one may then work backwards, and
construct an ad hoc extrinsic Lagrangian, obviously different from the unconstrained one,
reproducing the pair (A.7) through the pull-back algorithm. A possible choice is

L̂ = 1

2
(ẋ2 + ẏ2) +

(
2k

β
− β

)
xẏ +

(
β2

2
− 2k

)
x2.

Once again, the calculations are entirely straightforward, and are left to the reader.

Example A.3. Disc of radiusR and massm, rolling without sliding on a horizontal plane, and
subject to ‘gyroscopic’ interactions, i.e. to velocity-dependent forces satisfying

∑
F i ·v i ≡ 0.

In terms of the Lagrangian coordinates: q1 = x = xG, q
2 = y = yG (G = centre of

the disc), q3 = θ = angle between the plane of the disc and the xz plane, q4 = ϕ = proper
rotation of the disc, the submanifold A → j1(Vn+1) of admissible kinetic states is described
by the equations q̇ i = ψiAzA, with

(
z1

z1

)
=

(
θ̇

ϕ̇

)
ψiA =




0 −R cos θ
0 −R sin θ
1 0
0 1


 . (A.8)

The pull-back of the unconstrained kinetic Poincaré–Cartan 1-form is

T dt + piω̃
i := i∗

(
T̃ dt +

∂T̃

∂q̇i
ωi

)
where T̃ = 1

2 (ẋ
2 + ẏ2) + 1

8mR
2(θ̇2 + 2ϕ̇2) denotes the unconstrained kinetic energy.

The Lagrange–Chetaev equations of motion read

i∗
[
Z

(
∂T̃

∂q̇k

)
− ∂T̃

∂qk
−Qk

]
∂ψk

∂zA
= 0

mathematically equivalent to

d

dt

∂T

∂zA
− ∂T

∂qi

∂ψi

∂zA
= pk

[
d

dt

(
∂ψk

∂zA

)
− ∂ψ

k

∂qi

∂ψi

∂zA

]
+Qk

∂ψk

∂zA
. (A.9)

Let us now observe the following basic facts:

(i) Given any contact 1-form σ = σiω̃i , a straightforward comparison with equation (A.8)
provides the representation

σk

[
d

dt

(
∂ψk

∂zA

)
− ∂ψ

k

∂qi

∂ψi

∂zA

]
= σk

[
∂ψiA

∂qi
ψiB −

∂ψiB

∂qi
ψiA

]
zB

= R(σ2 cos θ − σ1 sin θ)εABzB with εAB =
[

0 1
−1 0

]
.
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(ii) The assumption of gyroscopic forces is reflected in the requirement∑
F i · ∂x i

∂qk
q̇k = Qkψ

k
Az

A ≡ 0 ∀zA ⇒ Qkψ
k
A = C(t, q, z)εABzB.

(iii) If (l, ϑ̂) is a Lagrangian pair and ν is a Chetaev 1-form, (l, ϑ̂ + ν) is again a Lagrangian
pair.

In view of (i) and (ii), taking equation (A.8) into account, one can easily infer the existence of
at least one Chetaev 1-form ν = νiω̃i satisfying the condition

νk

[
d

dt

(
∂ψk

∂zA

)
− ∂ψ

k

∂qi

∂ψi

∂zA

]
= Qk

∂ψk

∂zA
.

The request is in fact equivalent to the system

ν3 = 0 ν4 = R(ν1 cos θ + ν2 sin θ) C = R(ν2 cos θ − ν1 sin θ)

for the components νi . For definiteness, consider e.g. the solution

ν = C

R

(− sin θ ω̃1 + cos θ ω̃2) .
Collecting all previous results we have then the conclusion: the ansatz

L = T = 1
8mR

2(θ̇2 + 6ϕ̇2)

ϑ̂ = piωi + ν = −mRϕ̇(cos θ ω̃1 + sin θ ω̃2) + 1
4mR

2(θ̇ ω̃3 + 2ϕ̇ω̃4) + ν

provides a Lagrangian pair for the given dynamical system.
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